
Controlled Chaos : Living on the Edge
Copyright 1996 Advanced Development Methods, Inc.

All Rights Reserved

The Origins of Scrum
The Scrum software development process described in this article arose from shared
concerns between Advanced Development Methods (ADM) and VMARK Software
(VMARK). ADM produces process automation software. VMARK produces object-
oriented software development environments. Both companies were concerned over the
lack of breakthrough productivity being reported in object-oriented development projects.
Both ADM's and VMARK's products are built using OO, and breakthrough productivity
had been experienced in both companies.

We were particularly concerned that OO and component-based development were being
hindered by currently available development processes. We wanted to ensure that the
processes used by our organizations, and other ISV's, were available to our customers and
the software development community.

After further analyzing how successful ISV's build software, we found that our
development processes are very similar. We all use empirical processes. We all control
the empirical processes through quantitative measures. We refer to the results of these
processes as "the best possible software" or "good enough software." We all were able to
relate stories of peers who used empirical processes without controls, and who were now
in the sin bin of failed ISV's.

The ISV's understood that building systems is an art guided by rules of thumb and tips
and techniques. A methodologist at one ISV said "...you can't expect a process to tell you
everything to do. Writing software is a creative process, like painting or writing or
architecture... ... [a process] supplies a framework that tells how to go about it and
identifies the places where creativity is needed. But you still have to supply the
creativity...."

Our first step in formalizing the ISV empirical development process into Scrum was
researching why the ISV empirical software development approach delivers breakthrough
productivity, and why the defined process advocated by the Software Engineering
Institute's Capability Maturity Model (SEI's CMM) doesn't. After all, CMM promises
those most elusive of things-predictability, quality, repeatability, and improvability.

Scientists Give Their Opinion
Why do the defined processes advocated by SEI CMM not measurably deliver? We
posed this question to scientists at DuPont Chemical's Advanced Research Facility,
where research into biochemical processes is applied to process automation.

The scientists inspected the systems development process. They concluded that many of
the processes, rather than being repeatable, defined, and predictable, were unpredictable
and unrepeatable. With that, the scientists explained the difference between predictable
(defined) and unpredictable (empirical).

If a process can be fully defined, with all things known about it so that it can be designed
and run repeatably with predictable results , it is known as a defined process, and it can
be subjected to automation. If all things about a process aren't fully known-only what
generally happens when you mix these inputs and what to measure and control to get the
desired output-these are called empirical processes.

A defined process is predictable; it performs the same every time. An empirical process
requires close watching and control, with frequent intervention. It is chaotic and
unrepeatable, requiring constant measurement and control through intelligent monitoring.

Models of empirical processes are derived by categorizing observed inputs and outputs
and defining the controls that cause them to occur within prescribed bounds. Empirical
process modeling involves constructing a process model strictly from experimentally
obtained input/output data, with no recourse to any laws concerning the fundamental
nature and properties of the system. No a priori knowledge about the process is
necessary; a process is treated like a black box.

The scientists further stated, "We are most amazed that your industry treats treat these ill-
formed processes as defined, and performs them without controls despite their irregular
nature. If chemical processes that we don't understand completely were handled in the
same way, we would get very unpredictable results."

We confirmed that we also get unpredictable results, such as undelivered systems,
delivered systems that are unusable by the customer, and the systems development
process going on interminably without adequate output generated.

Regarding the systems development process, the scientists concluded that they are mostly
empirical, because :

• Applicable first principles are not present
• The process is only beginning to be understood
• The process is complex
• The process is changing and unpredictable

Scrum Empirical Development Process
The Scrum software development process uses an iterative, incremental approach.
Interaction with the environment (technical, competitive, and user) is allowed, which will
change the project scope, technology, functionality, cost, and schedule whenever
required. Controls are used to measure and manage the impact.

Scrum accepts that the development process is unpredictable. The product is the best
possible software, factoring in cost, functionality, timing, and quality. This concept has
been discussed by James Bach of Software Testing Laboratories in various articles,
including "The Challenge of Good Enough Software" .

Scrum formalizes the empirical "do what it takes" software development process used
today by many successful ISV's. The empirical approach has been used by these ISV's to
cope with the otherwise overwhelming degree of complexity and uncertainty-chaos-in
which they develop products. The chaos exists not only in the marketplace where they
hope to sell the products, but in the technology that they employ to design and construct
these products.

These ISV's succeed and thrive amidst chaos. How? Is their development approach
applicable to IS organizations. Is it predictable and controlled? Can it be used in large and
small projects? Is it scaleable? Does it work for all types of development?

Scrum - Characteristics and Rules
Scrum encapsulates what works at the best ISV's., Several of the characteristics that
guide Microsoft's controlled-chaos approach to the development process are inherent in
Scrum :

• "It breaks down large products into manageable chunks - a few product features
that small teams can create in a few months.

• It enables project to proceed systematically even when team members cannot
determine a complete and stable product design at the project's beginning.

• It allows large teams to work like small teams by dividing work into pieces,
proceeding in parallel but synchronizing continuously, stabilizing in increments,
and continuously finding and fixing problems.

It facilitates competition based on customer feedback, product features, and short
development times by providing a mechanism to incorporate customer inputs, set

priorities, complete the most important parts first, and change or cut less important
features."

Scrum follows common ISV rules :

• Always have a product you can theoretically ship
• Speak a common language on a single development site
• Continuously test the product as you build it

The key principles the Scrum development process are:

• Small working teams that maximize communication, minimize overhead, and
maximize sharing of tacit, informal knowledge

• Adaptability to technical or marketplace (user/customer) changes to ensure the
best possible product is produced

• Frequent "builds", or construction of executables, that can be inspected, adjusted,
tested, documented, and built on

• Partitioning of work and team assignments into clean, low coupling partitions, or
packets

• Constant testing and documentation of a product-as it is built
• Ability to declare a product "done" whenever required (because the competition

just shipped, because the company needs the cash, because the user/customer
needs the functions, because that was when it was promised...).

Scrum and empirical development are recommended as enabling processes for
developing new software or software that already is object-oriented or has "clean
interfaces". Work objects or subsystems with high cohesion and low coupling are
grouped into packets. Teams are assigned one or more packets, maximizing a team's
ability to work independently. Scrum is applicable for any size project.

Applicable to Small Simple and Large
Complex Software Systems
Prior to Scrum, large complex systems had to be built using either a waterfall or modified
waterfall processes. A defined, stepwise approach provided task-level controls for
managing the process. However, many of these projects failed because they were
unresponsive to changing technology and user requirements, and the adequacy of the
deliverables from the tasks couldn't be determined.

A Scrum software project is controlled by establishing, maintaining, and monitoring key
measurements as controls. These controls replace task and time-reporting controls used in
the waterfall and other defined development processes. These controls are critical when a

software development project is viewed as an empirical process that encompasses an
unknown quantity of instability and unpredictability. Use of these controls is the
backbone of the Scrum development process.

Through the formalized controls of Scrum, the empirical development process becomes
formally scaleable. Using an initial systems architecture and design, work can be
partitioned and assigned to as many teams as required and managed at the team and
rollup levels. Overall and team risk, workload, problems and other measurements are
always known, assessed, and managed.

During the design and system architecture phase of Scrum, the designers and architects
divide the project into packets. Packets are assigned to teams based on priority and
scheduling constraints. Based on the degree of coupling between packets, groups of up to
six teams are organized into a management control cluster. This continues upwards until
a top level cluster has been created.

Empirical software development has been used to build systems as large as Windows NT
(approximately 4 million lines of C and C++ code)and the Norfolk Southern Railway
freight tracking system. Empirical software development has also been used to rapidly
get sophisticated, functionally-rich products to market, such as Borland's Quattro Pro for
Windows and Advanced Development Method's process management software, MATE (
approximately 4,100 function points). Scrum has also been used for short, simple
development projects.

Scrum Productivity
Compared to other development processes, Scrum delivers. Scrum was compared to other
popular development processes by Capers Jones from Software Productivity Group:
"Scrum methodology - similar to the iterative methodology, but assumes that all
requirements are not known in advance, and that the fastest path to surfacing and
implementing all requirements will be discovered empirically during the development
process. Careful control mechanisms are used to assure on-time delivery of a high quality
product, while allowing maximum flexibility of small, tightly coupled, development
teams. Requires a well motivated team and good leadership to implement effectively.
Productivity gains of 600% have been seen repeatedly in well executed projects. "

The Inner Workings of Scrum
Scrum consists of development processes and measurements that are used to control the
development processes.

The key to the success of Scrum is using measurements to maximize flexibility and risk
while maintaining control. Most projects try to avoid risk. Yet, risk is an inherent part of
software development. Scrum embraces risk by identifying and managing risk-so that the
best possible product can be built.

A Scrum software project is controlled by establishing, maintaining, and monitoring key
control parameters. These controls are critical when a software development
encompasses an unknown quantity of uncertainty, unpredictable behavior, and chaos. Use
of these controls is the backbone of the Scrum development process.

The variables in the systems development project are risk, functionality, cost, time, and
quality. These variables can be roughly estimated at the start of a project. Each variable
will start changing from the moment the project starts. Variables are traded off against
each other as the project progresses (improved functionality for later time and more
money, etc.).

The controls used in Scrum are:

• Backlog - an identification of all requirements that should be fulfilled in the
completed product

• Objects/Components - self-contained reusable things
• Packets - a group of objects within which a backlog item will be implemented.

Coupling between the objects in a packet is high. Coupling between packets is
low

• Problems - what must be solved by a team member to implement a backlog item
within an object(s) (includes bugs)

• Issues - Concerns that must be resolved prior to a backlog item being assigned to
a packet or a problem being solved by a change to a packet

• Solutions - the resolution of an issue or problem
• Changes - the activities that are performed to resolve a problem
• Risks - the risk associated with a problem, issue, or backlog item

These controls are measured, correlated, and tracked. The main controls are backlog and
risk. Backlog should start relatively high, get higher during planning, and then be whittled
away as the project proceeds - either by being solved or removed, until the software is
completed. Risk will rise with the identification of backlog , issues, and problems, and
fall to acceptable levels when the software is complete and delivered.

The Scrum methodology consists of three distinct processes.

Planning and System Architecture
Product functionality and estimated delivery requirement are planned based on current
backlog and assessed risk. The result of this process is the most optimal, elegant design
that meets product performance and architectural requirements.

The definition of a new release is based on currently known and uncovered backlog,
along with an estimate of its schedule and cost. If a new system is being developed,
conceptualization and analysis are performed. If this project is the next release of an
existing system, the analysis is more limited.

A baseline product is established. Changes in the user, customer, competitive, and
technological environment will require changes to this baseline definition as the project
proceeds. Increased productivity through good tools or uncovered components may open
the opportunity for adding more backlog to the product, or for releasing the product
earlier.

Backlog and risk management will allow the product release to be planned and managed
to optimize the product content and its chance of success - given the environment and
resources available. In other words, the very best product possible will be built.
Development will occur in a controlled environment, as close to the edge of chaos as
possible.

Key is pinning down the date at which the application should be released, prioritizing
functionality requirements, identifying resources available for the development effort,
envisioning the application architecture, and establishing the target operating
environment(s). Compared with other methodologies, the planning phase is conducted
relatively quickly because it assumes that pragmatic managers and the course of events
will require that these initial parameters will be later changed.

What differentiates the Scrum Planning and System Architecture process from other
methodologies is:

• Controls are established : backlog (requirements) for this project is established
and prioritized, risks are defined, objects for implementing backlog are identified,
and problems are stated for implementing the backlog into the related objects.

• Team assignments : backlog is assigned to teams of no more than 6 developers,
maximizing communication bandwidth and productivity.

• Prioritization : backlog items are prioritized for teams to work on, starting with
infrastructure, then most important functionality to least important functionality.

Sprint (consisting of multiple sprints)

Visualize a large pressure cooker. Scrum development work is done in it. Gauges sticking
out of the pressure cooker provide detailed information on the inner workings, including
backlog, risks, problems, changes, and issues. The pressure cooker is where Scrum
sprints occur, iteratively producing incrementally more functional product.

A sprint is a set of development activities conducted over a pre-defined period resulting
in a demonstrable executable. The interval is based on product complexity, risk
assessment, and degree of oversight desired. Sprint speed and intensity are driven by the
selected duration of the sprint. The duration also depends on where it occurs in the

sequence of sprints (initial sprints are usually given longer duration, later sprints less
duration), the degree of control desired, and the level of domain expertise of the various
teams. Duration range from one to six weeks

This is where Scrum radically differs from traditional enterprise application
methodologies because the planned product (backlog, risk) can be changed at the end of
any sprint, in response to the environment (competition, new technology, development
tool flaws, etc.). This ensures that the delivered product is a usable product.

Also different, the Sprint phase duration is unknown. The Sprint duration was initially
planned-however, as the sprint iterations occur and the product is incrementally
developed, the product may be deemed worth delivery at the end of any sprint ... because
of market announcements, competitive pressures, or the product is just ready.

The project manager establishes sprint teams consisting of between 1 and 7 members (a
fully staffed team should include a developer, quality assurance person, and
documentation member). Each sprint consists of one or more teams working on their
assigned packets to solve the problems posed for implementing backlog in the objects.
Each team is given its assignment(s) and all teams are told to sprint to achieve their
objectives on the same day between 1 and 6 weeks from the start of the sprint. However,
this process is not as undisciplined as it may seem each team must deliver executable
code to successfully end a sprint.

The project remains open to environmental complexity, including competitive, time,
quality, and financial pressures, throughout the sprints. The definition of the planned
product can be changed during any review meeting of a Sprint. The project and product
remain flexible; the delivered product is the best possible and most relevant software
possible.

Closure and Consolidation.
When the management team determines that the product is ready for delivery-based on
the competition, requirements, cost, and quality-they end the Sprint phase and declare the
release "closed". Closure is performed when a build is considered to have reduced risk
adequately and resolved and implemented required backlog.

Closure consists of finishing system and regression testing, developing training materials,
and completing final documentation. Developed product are prepared for general release.
Integration, system test, user documentation, training material preparation, and marketing
material preparation are among closure tasks.

The Scrum process asserts that a product is never complete; after the initial construction,
it is constantly under development (otherwise known as maintenance and enhancements).
Consolidation prepares for the next development cycle. The purpose of consolidation is
to clean up the products and artifacts of this development cycle for a clean start on the

next development cycle. This provides an opportunity to clean up all of the loose ends
that were let slip during the pressure of getting the release out the door.

Summary
Scrum produces breakthrough productivity, enabling building the best systems possible
in complex, unpredictable environments.

We believe that we have captured the best practices at ISV's in Scrum, making them
available to IS organizations. Scrum controls and flexibility puts the teams back in
charge.References

The following sources contain reference material for the subjects of Scrum, "good
enough software", and empirical (theoretical) processes.

WorldWideWeb
ADM's home page : http://www.tiac.net/users/virman/

Jeff Sutherland's page on Scrum : http://www.tiac.net/users/jsuth/scrum/index.html

James Bach's views : http://www.stlabs.com/real_01.htm

Books

Cusamo, M. and Selby, R. Microsoft Secrets, The Free Press, 1995

DeGrace, P. and Hulet-Stahl, L. Wicked Problems, Righteous Solutions. Yourdon Press,
1990

Gleick, J. Chaos, Making a New Science Penguin Books, 1987

Ogunnaike, B. Process Dynamics, Modeling, and Control. Oxford University Press, 1994

Takeuchi, Hirotaka and Nonaka, Ikujiro, The Knowledge-Creating Company : How
Japanese Companies Create the Dynamics of Innovation. Oxford University Press, 1995

Articles

Bach, James. The Challenge of "Good Enough" Software, American Programmer
October, 1995

Curtis, B. A Mature View of the CMM. In American Programmer ,September, 1994

Racoon, L.B.S. The Chaos Model and the Chaos Life Cycle. In Software Engineering
Notes, vol. 20 no. 1, January 1995

Rumbaugh, J. What Is A Method? In Journal of Object Oriented Programming , October,
1995

	Controlled Chaos : Living on the Edge
	The Origins of Scrum
	Scientists Give Their Opinion
	Scrum Empirical Development Process
	Scrum - Characteristics and Rules
	Applicable to Small Simple and Large Complex Software Systems
	Scrum Productivity
	The Inner Workings of Scrum
	Planning and System Architecture
	Closure and Consolidation.

	Summary
	WorldWideWeb
	Books
	Cusamo, M. and Selby, R. Microsoft Secrets, The Free Press, 1995
	Gleick, J. Chaos, Making a New Science Penguin Books, 1987

	Articles

